The Romance of Modern Mechanism - Cover

The Romance of Modern Mechanism

Public Domaim

Chapter 12: The Machinery Of A Ship

THE REVERSING ENGINE--MARINE ENGINE SPEED GOVERNORS--THE STEERING ENGINE--BLOWING AND VENTILATING APPARATUS--PUMPS--FEED HEATERS--FEED-WATER FILTERS--DISTILLERS--REFRIGERATORS--THE SEARCH-LIGHT--WIRELESS TELEGRAPHY INSTRUMENTS--SAFETY DEVICES--THE TRANSMISSION OF POWER ON A SHIP

With many travellers by sea the first impulse, after bunks have been visited and baggage has been safely stored away, is to saunter off to the hatches over the engine-room and peer down into the shining machinery which forms the heart of the vessel. Some engine is sure to be at work to remind them of the great power stored down there below, and to give a foretaste of what to expect when the engine-room gong sounds and the man in charge opens the huge throttle controlling some thousands of horse-power.

By craning forward over the edge of the ship, a jet of water may be seen spurting from a hole in the side just above the water-line, denoting either that a pump is emptying the bilge, or that the condensers are being cooled ready for the work before them.

Towards the forecastle a busy little donkey engine is lifting bunches of luggage off the quay by means of a rope passing over a swinging spar attached to the mast, and lowering it into the nether regions where stevedores pack it neatly away.

In a small compartment on the upper deck is some mysterious, and not very important-looking, gear: yet, as it operates the rudder, it claims a place of honour equalling that of the main engines which turn the screw.

To the ordinary passenger the very existence of much other machinery--the reversing engines, the air-pumps, the condensers, the “feed” heaters, the filters, the evaporators and refrigerators, and the ventilators--is most probably unsuspected. The electric light he would, from his experience of things ashore, vaguely connect with an engine “somewhere.” But the apparatus referred to either works so unobtrusively or is so sequestered from the public eye that one might travel for weeks without even hearing mention of it.

On a warship the amount of machinery is vastly increased. In fact, every war vessel, from the first-class battleship to the smallest “destroyer,” is practically a congeries of machines; accommodation for human beings taking a very secondary place. Big guns must be trained, fed, and cleaned by machinery; and these processes, simple as they sound, need most elaborate devices. The difference in respect of mechanism between the King Edward VII. and Nelson’s Victory is as great as that between a motor-car and a farmer’s cart. It would not be too much to say that the mechanical knowledge of any period is very adequately gauged from its fighting vessels.

[Illustration:

Photo]

[Cribb, Southsea.

A gigantic sheer-legs used for lowering boilers, big guns, turrets, etc., into men-of-war. The legs rise to a height of 140 feet, and will handle weights up to 150 tons.]

During the last twenty years marine engines have been enormously improved. But the advance of auxiliary appliances has been even more marked. In earlier times the matter considered of primary importance was the propulsion of the vessel; and engineers turned their attention to the problem of crowding the greatest possible amount of power into the least possible amount of space. This was effected mainly by the “compounding” of engines--using the steam over and over again in cylinders of increasing size--and by improving the design of boilers. As soon as this business had been well forwarded, auxiliary machinery, which, though not absolutely necessary for movement, greatly affected the ease, comfort, and economy of working a ship, got its share of notice, with the result that a tour round the “works” of a modern battleship or liner is a growing wonder and a liberal education in itself.

This chapter will deal with the auxiliaries to be found in large vessels designed for peaceful or warlike uses. Many devices are common to ships of both classes, and some are confined to one type only, though the “steel wall” certainly has the advantage with regard to multiplicity.

We may begin with

THE REVERSING ENGINE

All marine engines should be fitted with some apparatus which enables the engineer to reverse them from full speed ahead to full speed astern in a few seconds. The effort required to perform the operation of shifting over the valves is such as to necessitate the help of steam. Therefore you will find a special device in the engine-room which, when the engineer moves a small lever either way from the normal position, lets steam into a cylinder and moves rods reversing the main engine. By a link action (which could not be explained without a special diagram) the valves of the auxiliary are closed automatically as soon as the task has been performed; so that there is no constant pressure on the one or the other side of its piston. To prevent the reversal being too sudden, the auxiliary’s piston-rod is prolonged, and fitted to a second piston working in a second cylinder full of glycerine or oil. This piston is pierced with a small hole, through which the incompressible liquid passes as the piston moves. Since its passage is gradual, the engines are reversed deliberately enough to protect their valves from any severe strains. These reversing engines can, if the steam serving them fails, be worked by hand.

MARINE ENGINE SPEED GOVERNORS

When a ship is passing through a strong sea and pitches as she crosses the waves, the screw is from time to time lifted clear of the water, and the engines which a moment before had been doing their utmost, suddenly find their load taken off them. The result is “racing” of the machinery, which makes itself very unpleasantly felt from one end of the ship to the other. Then the screw, revolving at a speed much above the normal, suddenly plunges into the water again, and encounters great resistance to its revolution.

A series of changes from full to no “load,” as engineers term it, must be harmful to any engines, even though the evil effects are not shown at once. Great strains are set up which shake bolts loose, or may crack the heavy standards in which the cranks and shaft work, and even seriously tax the shaft itself and the screw. On land every stationary engine set to do tasks in which the load varies--which practically means all stationary engines--are fitted with a governor, to cut off the steam directly a certain rate of revolution is exceeded. These engines are the more easily governed because they carry heavy fly-wheels, which pick up or lose their velocity gradually. A marine engine, on the other hand, has only the screw to steady it, and this is extremely light in proportion to the power which drives it; in fact, has scarcely any controlling influence at all as soon as it leaves the water.

Marine engineers, therefore, need some mechanical means of restraining their engines from “running away.” The device must be very sensitive and quick acting, since the engines would increase their rate threefold in a second if left ungoverned when running “free”; while on the other hand it must not throttle the steam supply a moment after the work has begun again when the screw takes the water.

Many mechanisms have been invented to curb the marine engine. Some have proved fairly successful, others practically useless; and the fact remains that, owing to the greater difficulty of the task, marine governing is not so delicate as that of land engines. A great number of steamships are not fitted with governors, for the simple reason that the engineers are sceptical about such devices as a class and “would rather not be bothered with them.”

But whatever may have been its record in the past, the marine governor is at the present time sufficiently developed to form an item in the engine-rooms of many of our largest ships. We select as one of the best devices yet produced that known as Andrews’ Patent Governor; and append a short description.

It consists of two main parts--the pumps and the ram closing the throttle. The pumps, two in number, are worked alternately by some moving part of the engine, such as the air-pump lever. They inject water through a small pipe into a cylinder, the piston-rod of which operates a throttle valve in the main steam supply to the engines. At the bottom of this cylinder is a by-pass, or artificial leak, through which the water flows back to the pumps. The size of the flow through the by-pass is controlled by a screw adjustment.

We will suppose that the governor is set to permit one hundred revolutions a minute. As long as that rate is not exceeded the by-pass will let out as much water as the pumps can inject into the cylinder, and the piston is not moved. But as soon as the engines begin to race, the pumps send in an excess, and the piston immediately begins to rise, closing the throttle. As the speed falls, the leak gets the upper hand again, and the piston is pushed down by a powerful spring, opening the throttle.

It might be supposed that, when the screw “races,” the pumps would not only close the throttle, but also press so hard on it as to cause damage to some part of the apparatus before the speed had fallen again. This is prevented by the presence of a second control valve (or leak) worked by a connecting-rod rising along with the piston-rod of the ram. The two rods are held in engagement by a powerful spring which presses them together, so that a hollow in the first engages with a projection on the second. Immediately the pressure increases and the piston rises, the second valve is shut by the lifting of its rod, and so farther augments the pressure in the cylinder and quickens the closing of the throttle valve. This pressure increase must, however, be checked, or the piston would overrun and stop the engines. So when the piston has nearly finished its stroke the connecting-rod comes into contact with a stop which disengages it from the piston-rod and allows the second control valve to be fully opened by the spring pulling on its rod. The piston at once sinks to such a position as the pressure allows, and the action is repeated time after time.

The governing is practically instantaneous, though without shock, and is said to keep the engine within 3 per cent. of the normal rate. That is, if 100 be the proper number of revolutions, it would not be allowed to exceed 103 or drop below 97. Such governing is, in technical language, very “close.”

The idea is very ingenious: pumps working against a leak, and as soon as they have mastered it, being aided by a secondary valve which reduces the size of the leak so as to render the effect of the pumps increasingly rapid until the throttle has been closed. Then the secondary valve is suddenly thrown out of action, gives the leak full play, and causes the throttle to open quickly so that the steam may be cut off only for a moment. By the turning of a small milled screw-head a couple of inches in diameter the pace of 5,000 h.p. engines is as fully regulated as if a powerful brake were applied the moment they exceeded “the legal limit.”

STEERING ENGINES

The uninitiated may think that the man on the bridge, revolving a spoked-wheel with apparently small exertion, is directly moving the rudder to port or to starboard as he wishes. But the helm of a large vessel, travelling at high speed, could not be so easily deflected were not some giant at work down below in obedience to the easy motions of the wheel.

Sometimes in a special little cabin on deck, but more often in the engine-room, where it can be tended by the staff, there is the steering engine, usually worked by steam-power. Two little cylinders turn a worm-screw which revolves a worm-wheel and a train of cogs, the last of which moves to right or left a quadrant attached to the chains or cables which work the rudder. All that the steersman has to do with his wheel is to put the engine in forward, backward, or middle gear. The steam being admitted to the cylinders quickly moves the helm to the position required.

A particularly ingenious steam gear is that made by Messrs. Harfield and Company, of London. Its chief feature is the arrangement whereby the power to move the rudder into any position remains constant. If you have ever steered a boat, you will remember that, when a sudden curve must be made, you have to put far more strength into the tiller than would suffice for a slight change of direction. Now, if a steam-engine and gear were so built as to give sufficient pressure on the helm in all positions, it would, if powerful enough to put the ship hard-a-port, evidently be overpowered for the gentler movements, and would waste steam. The Harfield gear has the last of the cog-train--the one which engages with the rack operating the tiller--mounted eccentrically. The rack itself is not part of a circle, but almost flat centrally, and sharply bent at the ends. In short, the curve is such that the rack teeth engage with the eccentric cog at all points of the latter’s revolution.

When the helm is normal the longest radius of the eccentric is turned towards the rack. In this position it exerts least power; but least power is then needed. As the helm goes over, the radius of the cogs gradually decreases, and its leverage proportionately increases. So that the engine is taxed uniformly all the time.

Some war vessels, including the ill-fated Russian cruiser Variag, have been fitted with electric steering gear, operated by a motor in which the direction of the current can be varied at the will of the helmsman.

All power gears are so arranged that, in case of a breakdown of the power, a hand-wheel can be quickly brought into play.

BLOWING AND VENTILATING APPARATUS

A railway locomotive sends the exhaust steam up the funnel with sufficient force to expel all air from the same and to create a vacuum. The only passage for the air flying to fill this empty space lies through the fire-box and tubes traversing the boiler from end to end. Were it not for the “induced draught”--the invention of George Stephenson--no locomotive would be able to draw a train at a higher speed than a few miles an hour.

On shipboard the fresh water used in the boilers is far too precious to be wasted by using it as a fire-exciter. Salt water to make good the loss would soon corrode the boilers and cause terrible explosions. Therefore the necessary draught is created by forcing air through the furnaces instead of by drawing it.

The stoke-hold is entirely separated from the outer air, except for the ventilators, down which air is forced by centrifugal pumps at considerable pressure. This draught serves two purposes. It lowers the temperature of the stoke-hold, which otherwise would be unbearable, and also feeds the fires with plenty of oxygen. The air forced in can escape in one way only, viz. by passing through the furnaces. When the ship is slowed down the “forced draught” is turned off, and then you see the poor stokers coming up for a breath of fresh air. In the Red Sea or other tropical latitudes these grimy but useful men have a very hard time of it. While passengers up above are grumbling at the heat, the stoker below is almost fainting, although clad in nothing but the thinnest of trousers.

In the engine-room also things at times become uncomfortably warm. Take the case of the United States monitor Amphitrite, which went into commission in 1895 for a trial run.

Both stoke-hold and engine-room were very insufficiently ventilated. The vessel started from Hampton Roads for Brunswick, Georgia. “The trip of about 500 miles occupied five days in the latter part of July, and, for sheer suffering, has perhaps seldom been equalled in our naval history. The fire-room (stoke-hold) temperature was never below 150°, and often above 170°, while the engine-room ranged closely about 150°. For the first twenty-four hours the men stood it well, but on the second day seven succumbed to the heat and were put on the sick list, one of them nearly dying; before the voyage was ended, twenty-eight had been driven to seek medical attendance. The gaps thus created were partially filled with inexperienced men from the deck force, until there was only a lifeboat’s crew left in each watch ... On the evening of the fourth day out our men had literally fought the fire to a finish and had been vanquished; the watch on duty broke down one by one, and the engines, after lumbering along slower and slower, actually stopped for want of steam ... At daybreak the next morning we got under way and steamed at a very conservative rate to our destination, fortunately only about ten miles distant. The scene in the fire-room that morning was not of this earth, and far beyond description. The heat was almost destructive to life; steam was blowing from many defective joints and water columns; tools, ladders, doors, and all fittings were too hot to touch; and the place was dense with smoke escaping from furnace doors, for there was absolutely no draught. The men collected to build up the fires were the best of those remaining fit for duty, but they were worn out physically, were nervous, apprehensive, and dispirited. Rough Irish firemen, who would stand in a fair fight till killed in their tracks, were crying like children, and begging to be allowed to go on deck, so completely were they unmanned by the cruel ordeal they had endured so long. ‘Hell afloat’ is a nautical figure of speech often idly used, but then we saw it. For a month thereafter the ship was actively employed on the southern coast, drilling militia at different ports, and sweltering in the new dock at Port Royal. One trip of twenty-nine hours broke the record for heat, the fire-room being frequently above 180°. All fire-room temperatures were taken in the actual spaces where the men had to work, and not from hot corners or overhead pockets.”[16]

The ventilators were subsequently altered, and the men enjoyed comparative comfort. The words quoted will suffice to establish the importance of a proper current of air where men have to work. One of the greatest difficulties encountered in deep mining is that, while the temperature approaches and sometimes passes that of a stoke-hold, the task of sending down a cool current from above is, with depths of 4,000 ft. and over, a very awkward one to carry out.

On passenger ships the fans ventilating the cabins and saloons are constantly at work, either sucking out foul air or driving in fresh. The principle of the fan is very similar to that of the centrifugal water pump--vanes rotating in a case open at the centre, through which the air enters, to be flung by the blades against the sides of the case and driven out of an opening in its circumference. Sometimes an ordinary screw-shaped fan, such as we often see in public buildings, is employed.

PUMPS

Every steamship carries several varieties of pump. First, there are the large pumps, generally of a simple type, for emptying the bilge or any compartment of the ship which may have sprung a leak. “All hands to the pumps!” is now seldom heard on a steamer, for the opening of a steam-cock sets machinery in motion which will successfully fight any but a very severe breach. It is needless to say that these pumps form a very important part of a ship’s equipment, without which many a fine vessel would have sunk which has struggled to land.

The pumps for the condensers form another class. These are centrifugal force pumps; their duty is to circulate cold sea-water round the nests of tubes through which steam flows after passing through the cylinders. It is thus converted once more into water, ready for use again in the boiler. Every atom of the water is evaporated, condensed, and pumped back into the boiler once in a period ranging from fifteen minutes to an hour, according to the type of boiler and the size of the supply tanks.

Some condensers have the cooling water passed through the tubes, and the steam circulated round these in an air-tight chamber. In any case, the condenser should be so designed as to offer a large amount of cold surface to the hot vapour. A breakdown of the condenser pumps is a serious mishap, since steam would then be wasted, which represents so much fresh water--hard to replace in the open sea. It would be comparable to the disarrangement of the circulating pump on a motor-car, though the effects are different.

We must not forget the feed-pumps for the boilers. On their efficient action depends the safety of the ship and her passengers. Water must be maintained at a certain level in the boiler, so that all tube and other surfaces in direct contact with the furnace gases may be covered. The disastrous explosions we sometimes hear of are often caused by the failure of a pump, the burning of a tube or plate, and the inevitable collapse of the same. The firms of Weir and Worthington are among the best-known makers of the special high-pressure pumps used for throwing large quantities of water into the boilers of mercantile and war vessels.

FEED HEATERS

As the fuel supply of a vessel cannot easily be replenished on the high seas, economy in coal consumption is very desirable.

If you put a cold spoon into a boiling saucepan ebullition is checked at once, though only for a moment, while the spoon takes in the temperature of the water. Similarly, if cold water be fed into a boiler the steam pressure at once falls. Therefore the hotter the feed water is the better.

The feed heater is the reverse of the condenser. In the latter, cold water is used to cool hot steam; in the former, hot steam to heat cold water. There are many patterns of heaters. One type, largely used, sprays the cold water through a valve into a chamber through which steam is passed from the engines. The spray, falling through the hot vapour, partially condenses it and takes up some of its heat. The surplus steam travels on to the condensers. A float in the lower part of the chamber governs a valve admitting steam to the boiler pumps, so that as soon as a certain amount of water has accumulated the pumps are started, and the hot liquid is forced into the boiler.

Another type, the Hampson feeder, sends steam through pipes of a wavy form surrounded by the feed water, there being no actual contact between liquid and vapour.

An ally of the heater is the

FEED-WATER FILTER,

which removes suspended matter which, if it entered the boiler, would form a deposit round the tubes, and while decreasing their efficiency, make them more liable to burning. The most dangerous element caught by the filters is fatty matter--oil which has entered the cylinders and been carried off by the exhaust steam.

The filter is either high pressure, i.e. situated between the pump and the boiler; or low pressure, i.e. between the pump and the reservoir from which it draws its water. The second class must have large areas, so as not to throttle the supply unduly.

Many kinds of filtering media have been tried--fabrics of silk, calico, cocoanut fibre, towelling, sawdust, cork dust, charcoal, coke; but the ideal substance, at once cheap, easily obtainable, durable, and completely effective, yet remains to be found.

A filter should be so constructed that the filtering substance is very accessible for cleansing or renewal.

DISTILLERS

We now come to a part of a ship’s plant very necessary for both machines and human beings. Many a time have people been in the position of the Ancient Mariner, who exclaimed:--

“Water, water, everywhere,

But not a drop to drink!”

Water is so weighty that a ship cannot carry more than a very limited quantity, and that for the immediate needs of her passengers. The boilers, in spite of their condensers, waste a good deal of steam at safety valves through leaking joints and packings, and in other ways. This loss must be made good, for, as already remarked, salt water spells the speedy ruin of any boiler it enters.

The distiller in its simplest form combines a boiler for changing water into vapour, with a condenser for reconverting it to liquid. Solids in impure water do not pass off with the steam, so that the latter, if condensed in clean vessels, is fit for drinking or for use in the engine boilers.

A pound of steam will, under this system, give a pound of water. But as such procedure would be extravagant of fuel, compound condensers are used, which act in the following manner.

High-pressure steam is passed from the engine boilers into the tubes of an evaporator, and converts the salt water surrounding it into steam. The boiler steam then travels into its own condenser or into the feed water heater, while the steam it generated passes into the coils of a second evaporator, converts water there into steam, and itself goes to a condenser. The steam generated in the second evaporator does similar duty in a third evaporator. So that one pound of high-pressure steam is directly reconverted to water, and also indirectly produces between two and three pounds of fresh water.

The condensers used are similar to those already described in connection with the engines, and need no further comment. About the evaporators, it may be said that they are so constructed that they can be cleaned out easily as soon as the accumulation of salt and other matter renders the operation necessary. Usually one side is hinged, and provided with a number of bolts all round the edges which are quickly removed and replaced.

The United States Navy includes a ship, the Iris, whose sole duty is to supply the fleet she attends with plenty of fresh water. She was built in 1885 by Messrs. R. and W. Hawthorn, of Newcastle-on-Tyne, and measures 310 feet in length, 38-1/2 feet beam. For her size she has remarkable bunker capacity, and can accommodate nearly 2,500 tons of coal. Fore and aft are huge storage tanks to hold between them about 170,000 gallons of fresh water. Her stills can produce a maximum of 60,000 gallons a day. It has been reckoned that each ton of water distilled costs only 18 cents; or, stated otherwise, that 40 gallons cost one penny. At many ports fresh water costs three or four times this figure; and even when procured is of doubtful purity. During the Spanish-American War the Iris and a sister ship, the Rainbow, proved most useful.

REFRIGERATORS

Of late years the frozen-meat trade has increased by leaps and bounds. Australia, New Zealand, Argentina, Canada, and the United States send millions of pounds’ worth of mutton and beef across the water every year to help feed the populations of England and Europe.

In past times the live animals were sent, to be either killed when disembarked or fatted up for the market. This practice was expensive, and attended by much suffering of the unfortunate creatures if bad weather knocked the vessel about.

Refrigerating machinery has altered the traffic most fundamentally. Not only can more meat be sent at lower rates, but the variety is increased; and many other substances than flesh are often found in the cold stores of a ship--butter and fruit being important items.

Certain steamship lines, such as the Shaw, Savill, and Albion--plying between England and Australasia--include vessels specially built for the transport of vast numbers of carcases. Upwards of a million carcases have been packed into the hull of a single ship and kept perfectly fresh during the long six weeks’ voyage across the Equator.

Every passenger-carrying steamer is provided with refrigerating rooms for the storage of perishable provisions; and as the comfort of the passengers, not to say their luxury, is bound up with these compartments, it will be interesting to glance at the method employed for creating local frost amid surrounding heat.

The big principle underlying the refrigerator is this--that a liquid when turned into gas absorbs heat (thus, to convert water into steam you must feed it with heat from a fire), and that as soon as the gas loses a certain amount of its heat it reverts to liquid form.

Now take ammonia gas. The “spirits of hartshorn” we buy at the chemist’s is water impregnated with this gas. At ordinary living temperatures the water gives out the gas, as a sniff at the bottle proves in a most effective manner.

If this gas were cooled to 37·3° below zero it would assume a liquid state, i.e. that temperature marks its boiling point. Similarly steam, cooled to 212° Fahr., becomes water. Boiling point, therefore, merely means the temperature at which the change occurs.

Ammonia liquid, when gasifying, absorbs a great amount of heat from its surroundings--air, water, or whatever they may be. So that if we put a tumbler full of the liquid into a basin of water it would rob the water of enough heat to cause the formation of ice.

The refrigerating machine, generally employed on ships, is one which constantly turns the ammonia liquid into gas, and the gas back into liquid. The first process produces the cold used in the freezing-rooms. The apparatus consists of three main parts:--

(1) The compressor, for squeezing ammonia gas.

(2) The condenser, for liquefying the gas.

(3) The evaporator, for gasifying the liquid.

The source of this story is SciFi-Stories

To read the complete story you need to be logged in:
Log In or
Register for a Free account (Why register?)

Get No-Registration Temporary Access*

* Allows you 3 stories to read in 24 hours.

Close