Curiosities of the Sky - Cover

Curiosities of the Sky

Public Domain

Star-Clouds, Star-Clusters, and Star-Streams

In the preceding chapter we have seen something of the strangely complicated structure of the Galaxy, or Milky Way. We now proceed to study more comprehensively that garlanded ‘‘Pathway of the Gods.’’

Judged by the eye alone, the Milky Way is one of the most delicately beautiful phenomena in the entire realm of nature -- a shimmer of silvery gauze stretched across the sky; but studied in the light of its revelations, it is the most stupendous object presented to human ken. Let us consider, first, its appearance to ordinary vision. Its apparent position in the sky shifts according to the season. On a serene, cloudless summer evening, in the absence of the moon, whose light obscures it, one sees the Galaxy spanning the heavens from north to southeast of the zenith like a phosphorescent arch. In early spring it forms a similar but, upon the whole, less brilliant arch west of the zenith. Between spring and summer it lies like a long, faint, twilight band along the northern horizon. At the beginning of winter it again forms an arch, this time spanning the sky from east to west, a little north of the zenith. These are its positions as viewed from the mean latitude of the United States. Even the beginner in star-gazing does not have to watch it throughout the year in order to be convinced that it is, in reality, a great circle, extending entirely around the celestial sphere. We appear to be situated near its center, but its periphery is evidently far away in the depths of space.

Although to the casual observer it seems but a delicate scarf of light, brighter in some places than in others, but hazy and indefinite at the best, such is not its appearance to those who study it with care. They perceive that it is an organic whole, though marvelously complex in detail. The telescope shows that it consists of stars too faint and small through excess of distance to be separately visible. Of the hundred million suns which some estimates have fixed as the probable population of the starry universe, the vast majority (at least thirty to one) are included in this strange belt of misty light. But they are not uniformly distributed in it; on the contrary, they are arrayed in clusters, knots, bunches, clouds, and streams. The appearance is somewhat as if the Galaxy consisted of innumerable swarms of silver-winged bees, more or less intermixed, some massed together, some crossing the paths of others, but all governed by a single purpose which leads them to encircle the region of space in which we are situated.

From the beginning of the systematic study of the heavens, the fact has been recognized that the form of the Milky Way denotes the scheme of the sidereal system. At first it was thought that the shape of the system was that of a vast round disk, flat like a cheese, and filled with stars, our sun and his relatively few neighbors being placed near the center. According to this view, the galactic belt was an effect of perspective; for when looking in the direction of the plane of the disk, the eye ranged through an immense extension of stars which blended into a glimmering blur, surrounding us like a ring; while when looking out from the sides of the disk we saw but few stars, and in those directions the heavens appeared relatively blank. Finally it was recognized that this theory did not correspond with the observed appearances, and it became evident that the Milky Way was not a mere effect of perspective, but an actual band of enormously distant stars, forming a circle about the sphere, the central opening of the ring (containing many scattered stars) being many times broader than the width of the ring itself. Our sun is one of the scattered stars in the central opening.

As already remarked, the ring of the Galaxy is very irregular, and in places it is partly broken. With its sinuous outline, its pendant sprays, its graceful and accordant curves, its bunching of masses, its occasional interstices, and the manifest order of a general plan governing the jumble of its details, it bears a remarkable resemblance to a garland -- a fact which appears the more wonderful when we recall its composition. That an elm-tree should trace the lines of beauty with its leafy and pendulous branches does not surprise us; but we can only gaze with growing amazement when we behold a hundred million suns imitating the form of a chaplet! And then we have to remember that this form furnishes the ground-plan of the universe.

As an indication of the extraordinary speculations to which the mystery of the Milky Way has given rise, a theory recently (1909) proposed by Prof. George C. Comstock may be mentioned. Starting with the data (first) that the number of stars increases as the Milky Way is approached, and reaches a maximum in its plane, while on the other hand the number of nebulæ is greatest outside the Milky Way and increases with distance from it, and (second) that the Milky Way, although a complete ring, is broad and diffuse on one side through one-half its course -- that half alone containing nebulæ -- and relatively narrow and well defined on the opposite side, the author of this singular speculation avers that these facts can best be explained by supposing that the invisible universe consists of two interpenetrating parts, one of which is a chaos of indefinite extent, strewn with stars and nebulous dust, and the other a long, broad but comparatively thin cluster of stars, including the sun as one of its central members. This flat star-cluster is conceived to be moving edgewise through the chaos, and, according to Professor Comstock, it acts after the manner of a snow-plough sweeping away the cosmic dust and piling it on either hand above and below the plane of the moving cluster. It thus forms a transparent rift, through which we see farther and command a view of more stars than through the intensified dust-clouds on either hand. This rift is the Milky Way. The dust thrown aside toward the poles of the Milky Way is the substance of the nebulæ which abound there. Ahead, where the front of the star-plough is clearing the way, the chaos is nearer at hand, and consequently there the rift subtends a broader angle, and is filled with primordial dust, which, having been annexed by the vanguard of the star-swarm, forms the nebulæ seen only in that part of the Milky Way. But behind, the rift appears narrow because there we look farther away between dust-clouds produced ages ago by the front of the plough, and no scattered dust remains in that part of the rift.

In quoting an outline of this strikingly original theory the present writer should not be understood as assenting to it. That it appears bizarre is not, in itself, a reason for rejecting it, when we are dealing with so problematical and enigmatical a subject as the Milky Way; but the serious objection is that the theory does not sufficiently accord with the observed phenomena. There is too much evidence that the Milky Way is an organic system, however fantastic its form, to permit the belief that it can only be a rift in chaotic clouds. As with every organism, we find that its parts are more or less clearly repeated in its ensemble. Among all the strange things that the Milky Way contains there is nothing so extraordinary as itself. Every astronomer must many times have found himself marveling at it in those comparatively rare nights when it shows all its beauty and all its strangeness. In its great broken rifts, divisions, and spirals are found the gigantic prototypes of similar forms in its star-clouds and clusters. As we have said, it determines the general shape of the whole sidereal system. Some of the brightest stars in the sky appear to hang like jewels suspended at the ends of tassels dropped from the Galaxy. Among these pendants are the Pleiades and the Hyades. Orion, too, the ‘‘Mighty Hunter, ‘‘ is caught in ‘‘a loop of light’’ thrown out from it. The majority of the great first-magnitude stars seem related to it, as if they formed an inner ring inclined at an angle of some twenty degrees to its plane. Many of the long curves that set off from it on both sides are accompanied by corresponding curves of lucid stars. In a word, it offers every appearance of structural connection with the entire starry system. That the universe should have assumed the form of a wreath is certainly a matter for astonishment; but it would have been still more astonishing if it had been a cube, a rhomboid, or a dodecahedron, for then we should have had to suppose that something resembling the forces that shape crystals had acted upon the stars, and the difficulty of explaining the universe by the laws of gravitation would have been increased.

From the Milky Way as a whole we pass to the vast clouds, swarms, and clusters of stars of which it is made up. It may be, as some astronomers hold, that most of the galactic stars are much smaller than the sun, so that their faintness is not due entirely to the effect of distance. Still, their intrinsic brilliance attests their solar character, and considering their remoteness, which has been estimated at not less than ten thousand to twenty thousand light-years (a light-year is equal to nearly six thousand thousand million miles) their actual masses cannot be extremely small. The minutest of them are entitled to be regarded as real suns, and they vary enormously in magnitude. The effects of their attractions upon one another can only be inferred from their clustering, because their relative movements are not apparent on account of the brevity of the observations that we can make. But imagine a being for whom a million years would be but as a flitting moment; to him the Milky Way would appear in a state of ceaseless agitation -- swirling with ‘‘a fury of whirlpool motion.’’

The cloud-like aspect of large parts of the Galaxy must always have attracted attention, even from naked-eye observers, but the true star-clouds were first satisfactorily represented in Barnard’s photographs. The resemblance to actual clouds is often startling. Some are close-packed and dense, like cumuli; some are wispy or mottled, like cirri. The rifts and modulations, as well as the general outlines, are the same as those of clouds of vapor or dust, and one notices also the characteristic thinning out at the edges. But we must beware of supposing that the component suns are thickly crowded as the particles forming an ordinary cloud. They look, indeed, as if they were matted together, because of the irradiation of light, but in reality millions and billions of miles separate each star from its neighbors. Nevertheless they form real assemblages, whose members are far more closely related to one another than is our sun to the stars around him, and if we were in the Milky Way the aspect of the nocturnal sky would be marvelously different from its present appearance.

Stellar clouds are characteristic of the Galaxy and are not found beyond its borders, except in the ‘‘Magellanic Clouds’’ of the southern hemisphere, which resemble detached portions of the Milky Way. These singular objects form as striking a peculiarity of the austral heavens as does the great ‘‘Coal-sack’’ described in Chapter 1. But it is their isolation that makes them so remarkable, for their composition is essentially galactic, and if they were included within its boundaries they would not appear more wonderful than many other parts of the Milky Way. Placed where they are, they look like masses fallen from the great stellar arch. They are full of nebulæ and star-clusters, and show striking evidences of spiral movement.

Star-swarms, which are also characteristic features of the Galaxy, differ from star-clouds very much in the way that their name would imply -- i.e., their component stars are so arranged, even when they are countless in number, that the idea of an exceedingly numerous assemblage rather than that of a cloud is impressed on the observer’s mind. In a star-swarm the separate members are distinguishable because they are either larger or nearer than the stars composing a ‘‘cloud.’’ A splendid example of a true star-swarm is furnished by Chi Persei, in that part of the Milky Way which runs between the constellations Perseus and Cassiopeia. This swarm is much coarser than many others, and can be seen by the naked eye. In a small telescope it appears double, as if the suns composing it had divided into two parties which keep on their way side by side, with some commingling of their members where the skirts of the two companies come in contact.

Smaller than either star-clouds or star-swarms, and differing from both in their organization, are star-clusters. These, unlike the others, are found outside as well as inside the Milky Way, although they are more numerous inside its boundaries than elsewhere. The term star-cluster is sometimes applied, though improperly, to assemblages which are rather groups, such, for instance, as the Pleiades. In their most characteristic aspect star-clusters are of a globular shape -- globes of suns! A famous example of a globular star-cluster, but one not included in the Milky Way, is the ‘‘Great Cluster in Hercules.’’ This is barely visible to the naked eye, but a small telescope shows its character, and in a large one it presents a marvelous spectacle. Photographs of such clusters are, perhaps, less effective than those of star-clouds, because the central condensation of stars in them is so great that their light becomes blended in an indistinguishable blur. The beautiful effect of the incessant play of infinitesimal rays over the apparently compact surface of the cluster, as if it were a globe of the finest frosted silver shining in an electric beam, is also lost in a photograph. Still, even to the eye looking directly at the cluster through a powerful telescope, the central part of the wonderful congregation seems almost a solid mass in which the stars are packed like the ice crystals in a snowball.

The source of this story is SciFi-Stories

To read the complete story you need to be logged in:
Log In or
Register for a Free account (Why register?)

Get No-Registration Temporary Access*

* Allows you 3 stories to read in 24 hours.

Close