The Romance of Modern Mechanism - Cover

The Romance of Modern Mechanism

Public Domaim

Chapter 4: Portable Tools

“If the mountain won’t come to Mahomet,” says the proverb, “Mahomet must go to the mountain.”

This is as true in the workshop as outside;--Mahomet being the tool, the mountain the work on which it must be used. With the increase in size of machinery and engineering material, methods half a century old do not, in many cases, suffice; especially at a time when commercial competition has greatly reduced the margin of profits formerly expected by the manufacturer.

To take the case of a large shaft, which must have a slot cut along it on one side to accommodate the key-wedge, which holds an eccentric for moving the steam valves of a cylinder, or a screw-propeller, so that it cannot slip. The mass weighs, perhaps, twenty tons. One way of doing the job is to transport the shaft under a drill that will cut a hole at each end of the slot area, and then to turn it over to the planer for the intermediate metal to be scraped out. This is a very toilsome and expensive business, entailing the use of costly machinery which might be doing more useful work, and the sacrifice of much valuable time. Inventors have therefore produced portable tools which can perform work on big bodies just as efficiently as if it had been done by larger machinery, in a fraction of the time and at a greatly reduced cost. To quote an example, the cutting of a key-way of the kind just described by big machines would consume perhaps a whole day, whereas the light, portable, easily attached miller, now generally used, bites it out in ninety minutes.

PNEUMATIC TOOLS

The best known of these is the pneumatic hammer. It consists of a cylinder, inside which moves a solid piston having a stroke of from half an inch to six inches. Air is supplied through flexible tubing from a compressing pump worked by steam. The piston beats on a loose block of metal carried in the end of the tool, which does the actual striking. The piston suddenly decreases in diameter at about the centre of its length, leaving a shoulder on which air can work to effect the withdrawal stroke. By a very simple arrangement of air-ports the piston is made to act as its own valve. As the plane side of the piston has a greater area than that into which the piston-rod fits, the striking movement is much more violent than the return. Under a pressure of several hundreds of pounds to the square inch a pneumatic hammer delivers upwards of 7,000 blows per minute; the quick succession of comparatively gentle taps having the effect of a much smaller number of heavier blows. For the flat hammer head can be substituted a curved die for riveting, or a chipping chisel, or a caulking iron, to close the seams of boilers.

The riveter is peculiarly useful for ship and bridge-building work where it is impossible to apply an hydraulic tool. A skilled workman will close the rivet heads as fast as his assistant can place them in their holes; certainly in less than half the time needed for swing-hammer closing.

Even more effective proportionately is the pneumatic chipper. The writer has seen one cut a strip off the edge of a half-inch steel plate at the rate of several inches a minute. To the uninitiated beholder it would seem impossible that a tool weighing less than two stone could thus force its way through solid metal. The speed of the piston is so high that, though it scales but a few pounds, its momentum is great enough to advance the chisel a fraction of an inch, and the individual advances, following one another with inconceivable rapidity, soon total up into a big cut.

Automatic chisels are very popular with ornamental masons, as they lend themselves to the sculpturing of elaborate designs in stone and marble.

Their principle, modified to suit work of another character, is seen in percussive rock drills, such as the Ingersoll Sergeant. In this case the piston and tool are solid, and the air is let into the cylinder by means of slide valves operated by tappets which the piston strikes during its movements. Some types of the rock-drill are controllable as to the length of their stroke, so that it can be shortened while the “entry” of the hole is being made and gradually increased as the hole deepens. For perpendicular boring the drill is mounted on a heavily weighted tripod, the inertia of which effectively damps all recoil from the shock of striking; for horizontal work, and sometimes for vertical, the support is a pillar wedged between the walls of the tunnel, or shaft. An ingenious detail is the rifled bar which causes the drill to rotate slightly on its axis between every two strokes, so that it may not jam. The drills are light enough to be easily erected and dismantled, and compact, so that they can be used in restricted and out-of-the way places, while their simplicity entails little special training on the part of the workman. With pneumatic and other power-drills the cost of piercing holes for explosive charges is reduced to less than one-quarter of that of “jumping” with a crowbar and sledgehammers. With the hand method two men are required, usually more; one man to hold, guide, and turn the drill; and the other, or others, to strike the blows with hammers. The machine, striking a blow far more rapidly than can be done by hand, reduces the number of operators to one man, and perhaps his helper. So durable is the metal of these wonderful little mechanisms that the delivery of 360,000 blows daily for months, even though each is given with a force of perhaps half a ton, fails to wear them out; or at the most only necessitates the renewal of some minor and cheap part. The debt that civilisation owes to the substitution of mechanical for hand labour will be fully understood by anyone who is conversant with the history of tunnel-driving and mining.

The source of this story is SciFi-Stories

To read the complete story you need to be logged in:
Log In or
Register for a Free account (Why register?)

Get No-Registration Temporary Access*

* Allows you 3 stories to read in 24 hours.

Close