Pharaoh's Broker
Copyright© 2018 by Ellsworth Douglass
Chapter III: Structure of the Projectile
A few weeks later I received a letter from Dr. Anderwelt asking me to call at his rooms on the West Side that afternoon, as soon as the market had closed. He desired to exhibit and explain the drawings of the new projectile and talk over the preparations for the trip. I had been so engrossed with every sort of worry that I had thought but little of the doctor and his grand schemes of late. But now I was anxious to know what progress he was making. Sometimes I felt that I had been foolish to put any money into the thing; but the doctor’s idea of reversing gravity was so simple and so elemental, that I marvelled it had never occurred to scientists before.
After the market I hunted up the street and number the doctor had given me, and found a little, dingy boarding-house, lost among machine shops and implement factories, near the west side of the river. In a third-floor back room, with one small window looking out on dark, sooty buildings and belching chimneys, Dr. Anderwelt was thinking out all the incidental problems, and preparing for all the emergencies that might arise on a trip of some forty million miles, through unknown space, to a strange planet whose composition was unguessed.
The walls of the room were soiled and bare, except for blue-prints of drawings from which the projectile was being built in neighbouring foundries. There were but two plain, hard chairs in the room. The doctor sat on one with a pillow doubled up under him for a cushion. He was bending over a draughting board, which was propped up on the bed during the day and went under it at night.
Three flights of steep stairs had taken my breath, and I dropped into the other hard chair and exclaimed, --
“I say, Doctor, why didn’t you take an office in the twelfth heaven of a modern office building over in town, where they have elevators? I have really forgotten how to climb stairs. Didn’t I furnish you money enough to do this thing right?”
“Don’t you think this is a good place?” he inquired in some surprise. “The rent is cheap, and it is convenient to the work. But speaking of elevators, we are going to revolutionize all that. No more hoisting or hydraulic lifts after we apply our ideas to the lifting of these elevator cages!”
“I am afraid this idea of negative gravity is apt to revolutionize everything, and generally upset the entire universe,” I replied. “I have been wondering what would happen if you were to apply a negative current to this Earth of ours and send it whirling out of its orbit, an ostracised Pariah, repelled by all the celestial bodies!”
“Not the slightest danger of any such calamity,” he answered. “The reversal of polarity can only be accomplished with comparatively small and insignificant masses. It would be impossible to impart a negative condition even to the smallest satellite. Our projectile will weigh but a few thousand pounds, compared to the millions of tons of the smallest celestial bodies. The Creator has looked out for the stability of the universe, never fear for that! And He has also given us a few hints of negative currents and repellant gravities in the form of meteorites and falling stars, which cannot be so well explained by any other theory. But what I want to talk to you about is the vital importance of providing against every possible emergency before starting on this trip through space. A trifling oversight in the preparations may mean death in the end, and things we put no value on here we might be willing to give a fortune for on Mars!”
“Well, let’s hear how this thing is built,” I said, rising and facing the larger blue-print. “So that’s the shape of it, is it? Looks like a cigar!”
“Yes, the design resembles that of a torpedo considerably,” replied the doctor, and referring to the sectional blue-print he began explaining the construction.
“This outer covering is a crust of graphite or black lead, inside which is a two-inch layer of asbestos. Both of these resist enormous heats, and they will prevent our burning by friction with atmospheres, and protect us against extremes of cold. Also, when we are ready, they will enable us to visit planets about whose cooled condition we are not certain. We might touch safely for a short time on a molten planet with this covering.
“Next comes the general outer framework of steel, just within which, and completely surrounding the living compartments, are the chambers for the storage of condensed air for use on the trip. These chambers are lined inside with another layer of asbestos. Now, air being a comparatively poor conductor of heat, and asbestos one of the best non-conductors we know of, this insures a stable temperature of the living compartments, regardless of the condition without, whether of extreme heat or extreme cold. Afterward comes the inner framework of steel, and lastly a wainscotting of hard wood to give the compartments a finish.”
“How large are these living rooms?” I inquired.
“The rear one is four feet high and eight feet long. The forward one, designed for my own use, is longer, and must contain a good-size telescope and all my scientific instruments. The apparatus with which I produce the currents is built into the left wall, and it acts on the steel work of the projectile only. The rear compartment has a sideboard for preparing meals, which will have to be wholly of bread, biscuits, and various tinned vegetables and meats. We shall not attempt any cooking.”
“But are there no windows for looking out?” I queried.
“Certainly, there are two of them, made of thick mica. One is directly in the front end, through which my telescope will look. The other is in the port-hole in the rear end. Each window is provided with an outer shutter of asbestos, which can be closed in case of great heat or cold. You will notice the two compartments can be separated by an air-tight plunger, fitting into the aperture between them. It will be necessary for both of us to occupy the same compartment while the air is being changed in the other. The foul air will be forced outside by a powerful pump until a partial vacuum is created. Then a certain measure of condensed air is emptied in, and expands until the barometer in that compartment indicates a proper pressure.”
“The air will be made to order while you wait, then?” I put in.
“That is exactly what will be done in a more literal manner than you may suppose!” exclaimed the doctor. “This air problem is a most interesting one, for we must educate ourselves on the trip to use the sort of atmosphere we expect to find when we land. For instance, going to Mars we must use an atmosphere more and more rarefied each day, until gradually we become used to the thin air we expect to find there. Of course, there is an especially designed barometer and thermometer, capable of being read in the rear compartment, but exposed outside near the rudder. The barometer will give us the pressure of the earthly atmosphere as it becomes more and more rare with our ascent. It will show us what pressure there is of the ether, which may vary considerably, depending on our nearness to heavenly bodies. It will also immediately indicate to us when we are entering any new atmosphere. When we have arrived at Mars, we shall observe the exact pressure of the Martian air, and then manufacture one of the same pressure inside, and try breathing it before we venture out. The thermometer will give us the temperature of the ether, will indicate the loss of heat as we leave the sun, and will show us the Martian temperature before we venture into it.”
To read the complete story you need to be logged in:
Log In or
Register for a Free account
(Why register?)
* Allows you 3 stories to read in 24 hours.